

POSITIVE CONTROL pBALF5 (EBV)

CATALOG NUMBER: DPC0005

LOT NUMBER: #

RECOMBINANT PLASMID: EBV BALF5 Positive Control DNA (Yoshinori *et al.*, 2010).

DESCRIPTION: plasmid dsDNA containing the complete sequence of the gene BALF5 amplified from the complete genome isolated from human Epstein-Barr virus.

QUANTITY: 100 μ l at 2.00 ng/ml (30,147,861.16 DNA copies, 301,478.61 copies/ μ l)

BLAST ANALYSIS: KC207813.1 complement (152783..155830)

PRESENTATION: liquid DNA solution

SOURCE: recombinant DNA propagated and purified from

Escherichia coli

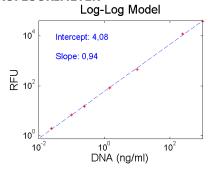
MOLECULAR WEIGHT: 4 megadalton, 6054 base pairs

BATCH COMPOSITION:

COMPONENTS	COMPOSITION
pBALF5	recombinant plasmid containing the
	complete ORF of EBV BALF5 gene
Storage buffer	DNase-free sterile TE 1x

QUALITY CONTROL:

1. INITIAL DNA CONCENTRATION DETERMINED ESPECTROPHOTOMETRICALLY

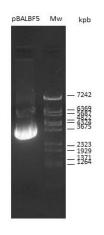

 $DO_{260} = 0.281 \text{ (dil } 1:200)$

CONCENTRATION INITIAL STOCK*: 2.80 mg/ml

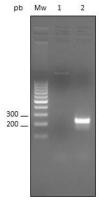
 * Direct measurements of nucleic acid samples at OD₂₆₀ can be converted to concentration using the Beer-Lambert law which relates absorbance to concentration using the pathlength of the measurement and an extinction coefficient of the DNA (1/50 $\mu g/ml^{\ast}cm)$ (Maniatis et al., 1982).

PURITY: A₂₆₀/A₂₈₀=1.82

2. DETERMINATION OF DNA CONCENTRATION BY ESPECTROFLUORIMETER

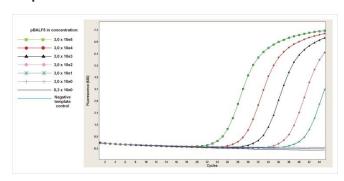

Figure 1. Calibration curve of lambda DNA from 25 pg/ml to 1000 ng/ml, using the PicoGreen dsDNA quantification reagent.

RFU: 114


CONCENTRATION: approx. 2 ng/ml

DATE OF BATCH DILUTION: 12/02/2013

3. PURITY CONTROL IN AGAROSE 0.8%

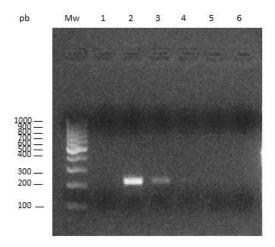


4. PCR CONTROL IN AGAROSE:

Figure 3. Electrophoresis analysis (2%) of PCR assay on pBALF5 DNA, with internal oligonucleotides. The amplified fragment has a molecular weight of 228 pb. Well 1, negative control; well 2, 1 μ l of pBALF5 2 ng/ml.

5. qPCR ASSAY:

Figure 4. qPCR assay using pBALF5 as positive control. Data provided by M. Przybylski and T. Dzieciatkowski, Medical University of Warsaw.


^{*} Internal oligonucleotide sequences are: 5´-GGAAGCCCTCTGGAC TTC-3´and 5´-GCAAACTCCACGTCCAGAC-3. Suggested concentration in a PCR assay, 0.5 μM

6. ABSENCE OF NUCLEASES: absence of contaminating RNA and genomic DNA impurities.

LOT SPECIFICATIONS:

- 1. CONCENTRATION: 2 ng/ml
- **2. TOTAL QUANTITY PER ALIQUOT:** 200 pg (30,147,861.16 DNA copies)
- 3. TOTAL VOLUME PER ALIQUOT: 0.1 ml
- **4. SUGGESTED TITER BY PCR:** 2 μ l of a 1:100 for traditional PCR, which corresponds to 40 fg (6029.56 copies).

Figure 5. Electrophoresis analysis (2%) of PCR assay on pBALF5 DNA, with internal oligonucleotides. Well numbers correspond to:

1-Negative control
2- 2 μl of the non-diluted solution
3- 2 μl of a 1/10 dilution
4- 2 μ l of a 1/100 dilution (last dil. detected in an agarose
gel)
5- 2 μl of a 1/1000 dilution
6- 2 µl of a 1/10,000 dilution

5. STORAGE: DNA is shipped with dry ice. Upon arrival they should be aliquoted and stored at -20°C to -80°C. Avoid multiple freeze/thaw cycles

- **6. APPLICATIONS:** for PCR and qPCR assays. Where this product has not been tested for use in a particular technique, this does not necessarily exclude its use in such procedures. Suggested working dilutions are given as a guide only. It is recommended that the user titrates.
- **7. OBSERVATIONS:** DNA in so high diluted solutions (< $1000 \text{ copies/}\mu$ l) is very unstable, therefore we recommend that these kind of dilutions should not be stored.

RELATED PRODUCTS:

None.

BIBLIOGRAPHY:

Yoshinori Ito, Shunji Takakura, Satoshi Ichiyama, Mitsuharu Ueda, Yukio Ando, Kazuyuki Matsuda, Eiko Hidaka, Kaname Nakatani, Junji Nishioka, Tsutomu Nobori, Naoki Kajiyama and Hiroshi Kimura. Multicenter evaluation of prototype real-time PCR assays for Epstein-Barr virus and cytomegalovirus DNA in whole blood samples from transplant recipients. *Microbiol Immunol* 2010; 54: 516–522.

Maniatis T, Fritsch EF and Sambrook J. Molecular cloning a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor NY (1982).

Important Notes: During shipment, small volumes of product will occasionally become entrapped in the seal of the product vial. For products with volumes of 200 μ l or less, we recommend gently tapping the vial on a hard surface or briefly centrifuging the vial in a tabletop centrifuge to dislodge any liquid in the containers cap.

Although plasmids are isolated from non-pathogenic *E. coli*, and bacterial integrity is destroyed during purification, the plasmid preparation should be handled as potentially infectious.

NOT FOR DIAGNOSTIC USE, FOR RESEARCH USE ONLY